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I. INTRODUCTION

The dependence of the threshold voltage and radiation response of

n-channel AlGaAs/GaAs modulation doped field-effect transistors (MODFETs)

on acceptor doping density has been analyzed previously (Refs. 1 and 2).

These analyses have been extended to describe the dependence of MODFET I-V

characteristics on acceptor doping density. A triangular-well, one-

subband, depletion layer model has been developed that applies over the

range of I-V characteristics from subthreshold to saturation, some nine

orders of magnitude in drain-source current.

For typical unintentional acceptor doping densities of 1013 to

1015 cm-3 , characteristic in molecular beam epitaxy (MBE) grown structures,

we show that the experimentally derived threshold voltage differs from the

strong inversion model threshold voltage (Ref. 1) by 0.25 V at ,ceptor

densities of 1013 cm-3 . At acceptor densities of 1015 cm-3 , the difference

between the strong inversion model and the experimental extrapolation for

the threshold voltage is about 0.12 V.

Inclusion of the acceptor doping density is shown to account for the

discrepancy between the AlGaAs layer and the device capacitance per unit

area described in the literature (Ref. 3).
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II. MODEL

The band structure of a typical AlGaAs(n)/GaAs heterojunction with a

Schottky barrier, *m' at the gate and a spacer layer at the interface under

bias, Vg, is shown in Fig. 1.

Under the restrictions imposed by the assumptions cited in the caption

of Fig. 1, Poisson's equation may be integrated across the structure to

yield the applied gate voltage as a function of device geometry, doping

densities, and channel charge, ns:

Vg = Vo + f(ns ) (1)

where Vo iz the difference between the Schottky barrier height and the sum

of the AlGaAs/GaAs band offset and potential drop across the doped AlGaAs

layer resulting from the ionized donors. The function f(ns) may be written

as

f(n S ) = (q/c)(d + a)(N aW + n ) + C (N aW + nS)2/3 + (kT/q)ln[exp(nsn ) - I]

(2)
where Co is a function of the Planck constant, the carrier effective mass, the

elemental charge, and the permittivity of AlGaAs and GaAs, all assumed to be

equal. Co is equal to - 1.7 x 10- 9 V-cm 4 / 3 . Similarly, the charge density nc

is a function of physical constants and the effective mass of the carriers and

is equal to - 8.4 10 cm-2. In the next section, we will exploit the

mathematical properties of the function f(ns ) to derive the electrical proper-

ties of these devices.
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Fig. 1. Band Diagram of a Typical AlGaAs(n)/GaAs MODFET with Schottky Gate,
Under Bias. In the depletion layer approximation, the donors and
acceptors are assumed to be completely ionized in the doped AlGaAs
layer, d, the spacer layer, a, and the depletion layer, W. The
doping densities, Nd and Na, are assumed to be constant. A delta-
function channel charge distribution at the average channel width is
assumed. Band bending from the interface at (d + a) to the edge of
the depletion region (W + d + a) is the difference of position of
conduction band relative to the Fermi level, E /2 + O~ulk' and the
Fermi level relative to the bottom of the two-dimensional channel,
Ef.
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III. ELECTRICAL PROPERTIES

A. THRESHOLD VOLTAGE

At threshold, we require that the channel density be equal to the

acceptor density, N a, times the average channel width, Zav , which may be

calculated in the triangular-well approximation using variational wave

functions (Ref. 4). This definition for threshold is consistent with the

strong inversion definition of threshold in metal oxide semiconductor field

effect transistors (MOSFETs). Our definition is the two-dimensional

equivalent. Evaluating Eq. (2) at threshold and substituting into Eq. (1)

yields the threshold voltage. The results of this calculation indicate that

the threshold voltage is very sensitive to the acceptor doping density above

S10
14 cm- 3 . The details of this calculation have been presented elsewhere

(Ref. 1).

B. SUBTHRESHOLD I-V CHARACTERISTICS

In the subthreshold region, where ns < NaZav over the whole channel,

f(ns ) may be approximated as follows:

f(ns ) = (kT/q)ln[g(ns)] (3)

Solving Eq. (3) for g(ns), expanding to first order about the threshold

charge, and using Eq. (2) to determine the Taylor series expansion coeffi-

cients yield a convenient approximation for f(n s ) when substituted back into

Eq. (3). Shown in Fig. 2 is the function f(ns), which is equivalent to (V -

V0 ) vs the log of the channel charge for two values of the acceptor doping

density. The long dashes are the results of the approximation just described.

Using the subthreshold approximation for f(n s ) in Eq. (1), and solving

for ns in terms of Vg, we may calculate the subthreshold I-V characteristics

using a charge control model (Ref. 5). The results of this calculation yield

the MODFET equivalent of the MOSFET charge sheet subthreshold characteristics

(Ref. 6). Details of these results will be discussed at the end of this

9
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Fig. 2. V - Vo vs the Log of the Channel Charge. The solid lines are the
results given by Eq. (2). The long dashes are the results of the
Taylor expansion of f(ns ) in subthreshold, as described in the
text. For an acceptor doping gensity of 1013 cm-3 , the threshold
charge density is less than 108 cm-2 . Therefore, the subthreshold
expansion is useful well above the threshold charge density. At an
acceptor doping density of 1017 cm"3 , the threshold density is near
1011 cm-2 , and this expansion is only useful for channel charge
densities below threshold. The short dashes are the results of a
Taylor expansion of f(ns ) about nc, as described in the text.
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sect,on in the context of the complete description of I-V characteristics from

subthreshoid to saturation.

C. SATURATION 1-V CHARACTERISTICS

We de line t he saturation region such that n s ,n c over the whole channel.

in thij region, Eq. (2) may be expanded in a Taylor series in n about n c .

The re~uits of this approximation to first order are shown as short dashes in

Fig. 2. Above rc (8.4 1011 Cm-2 ), the expansion is quite good. Much below

r c ( i -.I 1 1 cm- 2 ), the f':rst order expansion departs from the exact result

rd appraoan:os a constant at low channel densities orv 41 acceptor dernsities.

As bV.re, the approximation for f(n 5 ) may be substituted into Eq. (1), wich

is invrt:rtc to yield r;s as a furnction of V g. The result is

S 1-1
s 1 n + iV - V - f(n ) (kT q) (4)s c g o c

where K is a constant that depends on the device geometry, doping densities,

depletion width, and physical constants. This form for n5 is different than

the form previously assumed (Ref. 5). The previous form ignores the contri-

bution from nc and f(n c ) and implicitly assumes that K-  is (kT'q)CAGaAs.

The charge control model may then be used to calculate saturation I-V

characteristics. We will defer the detailed discussion of these results to

the end of this section.

D. DEVICE CAPACITANCE

The device capacitance, when the charge density in the channel is greater

than nc, may be determined by differentiating Eq. (4) with respect to V The

resulting capacitance per unit area, Carea' may be cast in the following form

(Ref. 3):

C a /(d + a + Ad) (5)area

where Ad is given by

Ad = (2L,/3q)C o(N aW + n ) 1/3 2 (6)
C

11
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Fig. 3. Difference of the Experimental and the Strong Inversion Threshold

Voltage vs the Log of the Acceptor Density. Each term in Eq. (8) is
plotted separately. At low acceptor densities (< 10 14 cm 2 ), the
difference may be as much as 0.25 V. This difference decreases as
the acceptor density increases. Because this difference depends on
the acceptor density, a comparison of experimental threshold voltages
may not be appropriate if acceptor densities differ significantly.
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IV. I-V CHARACTERISTICS FROM SUBTHRESHOLD TO SATURATION

In the charge control model, I-V characteristics are determined by

substituting Vg - Vc(x) for V in Eq. (1), inverting the result to find ns as

a function of Vc(x), substituting the result into the relationship for the

current at position x in the channel, and integrating over the channel length

(Ref. 5). In the subthreshold and saturation regions, as defined in

subsections III.B and III.C, the approximations for f(ns ) permit a

straightforward inversion of Eq. (1) for this purpose. As seen in Fig. 2,

there is a region over which neither the subthreshold nor the saturation

expansion applies. Because the integration for the current is performed over

the voltage in the channel as well as over the channel length, an

approximation must be determined that is continuous in the voltage, may be

inverted to explicitly determine the channel charge in terms of the channel

voltage, and reasonably approximates f(ns ) over the region.

To satisfy these requirements, we have derived a piecewise approximation

for f(ns ) over this region. From the threshold charge to the channel charge,

no? at which the exact f(ns ) is halfway between the subthreshold approximation

at threshold and the saturation approximation at nc, we have approximated

f(ns ) as the log of a linear function of ns. The two expansion coefficients

are chosen so that this approximation for f(ns ) is exact at no and connects

with the subthreshold approximation at the threshold channel density. From no

to nc, we have assumed that f(n) is linear in ns . The two expansion coeffi-

cients are determined so that the approximation in this region is exact at the

extremes, no and nc .

The charge control model may now be used to calculate the I-V character-

istics. A complication arises in the application of the charge control model

because, for various values of the applied gate and drain-source voltages,

different regions of the channel may have charge densities that must be calcu-

lated by different approximations to f(ns). Therefore, the current equation

must be integrated placewise, although never over more than four regions, as

15



our piecewise approximation for f(ns ) requires. Over a range of gate (or

drain-source) voltages, 10 possible combinations of regions might occur.

Shown in Fig. 4 is the drain-source current vs drain-source voltage, for the

parameters given, for various gate voltages using the approximations just

described.

In Fig. 5, we show the drain-source current vs applied gate voltage for

three values of the acceptor density id two values of the drain-source

voltage.

Intrinsic transconductances may be calculated by differentiating the

drain-source current relationships with respect to the gate voltage. Having

done this calculation, we obtain transconductances of - 300 mS/mm for struc-

tures with acceptor doping of 1015 cm- 3 , evaluated at zero gate voltage and

2.5 V drain-source voltage.
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Fig. 14. Drain-Source Current vs Drain-Source Voltage. The current saturates
at large drain-source voltage without velocity saturation or cutoff
of the model invoked. When the whole channel is forced into the
subthreshold charge region, the current depends on a constant plus an
exponential in -Vds which is negligible at large drain-source
voltages.
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